Blog de la Biblioteca de Matemàtiques i Informàtica

SIMBa: From Fermat’s Last Theorem to some generalized Fermat equations

Deixa un comentari

Dimarts 17 de gener se celebrarà una nova sessió del Seminari Informal de Matemàtiques de Barcelona.

Speaker: Nuno Freitas
Universitat: Departament d’Àlgebra i Geometria, Universitat de Barcelona

Data: dimarts 17 de gener de 2012
Hora: 17:15, cafè i galetes; 17:30, inici

Lloc: Aula T2 (al terrat), Facultat de Matemàtiques de la Universitat de Barcelona
From Fermat’s Last Theorem to some generalized Fermat equations.


The proof of Fermat’s Last Theorem was initiated by Frey, Hellegouarch, Serre, further developed by Ribet and ended with Wiles’ proof of the Shimura-Tanyama conjecture for semi-stable elliptic curves. Their strategy, now called the modular approach, makes a remarkable use of elliptic curves, Galois representations and modular forms to show that a^p + b^p=c^p has no solutions, such that (a,b,c)=1 if p \geq 3. Over the last 17 years, the modular approach has been continually extended and allowed people to solve many other Diophantine equations that previously seemed intractable. In this talk we will use the equation x^p+2^\alpha y^p=z^p as the motivation to introduce informally the original strategy (\alpha=0) and illustrate one of its fi rst refinements (for \alpha =1). Then we will discuss some further generalizations that recently led to the solution of equations of the form x^5+y^5=dz^p.

Si voleu rebre informació dels propers seminaris us podeu subscriure a la llista de correu. Si voleu contactar amb els responsables podeu escriure un missatge a simba(at)imub(dot)ub(dot)es

Deixa un comentari

Fill in your details below or click an icon to log in: Logo

Esteu comentant fent servir el compte Log Out / Canvia )

Twitter picture

Esteu comentant fent servir el compte Twitter. Log Out / Canvia )

Facebook photo

Esteu comentant fent servir el compte Facebook. Log Out / Canvia )

Google+ photo

Esteu comentant fent servir el compte Google+. Log Out / Canvia )

Connecting to %s