Dimecres 15 de maig se celebrarà a la seu de l’Institut d’Estudis Catalans (IEC) la I Jornada del Grup de Lògica i Filosofia de la Ciència. Kurt Gödel: De la incompletabilitat de les matemàtiques a la cerca de nous axiomes. L’acte constarà de dues conferències, seguides ambdues d’un torn obert de paraules.
- De Hilbert a Gödel: Una anàlisi de la veritat matemàtica, a càrrec del Dr. Josep Pla i Carrera, professor emèrit de la Universitat de Barcelona (UB).
Resum:Començarem la nostra conferència donant una breu informació sobre el programa de Hilbert i la seva relació amb la veritat matemàtica. A continuació explicarem la dualitat que plantegen aparentment els teoremes de completesa i incompletesa de Gödel, tot posantlos en relació amb els tres problemes de Hilbert lligats a la lògica. Ja posats en l’anàlisi dels teoremes d’incompletesa de Gödel, explicarem amb un cert aprofundiment els tres llenguatges involucrats en l’entrellat de la demostració del teorema d’incompletesa de Gödel. Finalment, aprofitant que estem celebrant encara l’any Turing, ens farem ressò del lligam entre Gödel i Turing, parlarem de “la indecidibilitat algorísmica” i donarem una breu notícia sobre el problema P≠NP.
- El programa de Gödel de recerca de nous axiomes matemàtics, a càrrec del Dr. Joan Bagaria i Pigrau, professor de la Facultat de Filosofia de la UB i investigador de la Institució Catalana de Recerca i Estudis Avançats (ICREA).
Resum: Una conseqüència dels teoremes d’incompletesa de Gödel és que qualsevol axiomatització consistent de la matemàtica és incompleta, la qual cosa vol dir que sempre hi hauran veritats matemàtiques que no es podran deduir dels axiomes. En particular, l’axiomatització estàndard de la matemàtica, els axiomes de Zermelo Fraenkel amb l’axioma d’elecció, o ZFC, no és suficient per a demostrar o refutar qualsevol qüestió matemàtica que es plantegi. De fet, ZFC no pot donar resposta a moltes qüestions matemàtiques fonamentals, com per exemple la Hipòtesi del Continu, la Hipòtesi de Suslin, o el problema de la mesura. Gödel mateix va proposar un programa de cerca de nous axiomes que permetessin donar resposta a aquestes i altres qüestions semblants. Aquest programa, desenvolupat per la teoria de conjunts, ha produït teories matemàtiques de gran bellesa i sofisticació tècnica, com ara la teoria de grans cardinals o el “forcing”, i ha donat lloc a resultats espectaculars, tant des del punt de vista matemàtic com per les seves implicacions filosòfiques. En la meva conferència presentaré alguns d’aquests resultats i discutiré la seva importància pel que fa als fonaments i la filosofia de la matemàtica.
Organitza la jornada el Grup de Lògica i Filosofia de la Ciència de la Societat Catalana de Filosofia, amb la col·laboració amb la Societat Catalana de Matemàtiques (SCM).