Blog de la Biblioteca de Matemàtiques i Informàtica

SIMBa: Studying the Fatou set for a generalization of Milnor’s family ofcubic maps

Deixa un comentari


El proper dimecres, 10 d’abril, se celebrarà una nova xerrada del Seminari Informal de Matemàtiques de Barcelona (SIMBa).

Speaker: Dan Alexandru Paraschiv
Universitat: Universitat de Barcelona

Data: Dimecres, 10 d’abril de 2019
Hora: 12:00, cafè; 12:20, xerrada
Lloc: Aula B1 Facultat de Matemàtiques de la Universitat de Barcelona.
Idioma: Anglès

Títol: Studying the Fatou set for a generalization of Milnor’s family ofcubic maps.
Resum: The first attempts of studying iteration of holomorphic functionswere succesfully realized by Julia and Fatou in the 1920s. However,due to technological limitations, having a good intuition of thearising fractal-like patterns was very difficult, and the problemstarted being studied again in the 1980s by Mandelbrot, startingwith the quadratic family P_{c}=z^{2} + c, where c \in \mathbb{C}.

Nowadays, among rational maps on the Riemann sphere, a heigh-tened interest in perturbation maps exist. We’ll summarilly introduce 3 families of maps (2 with perturbations, one of polynomials of degree 3) which are helpful in understanding ourwork. We will conclude with some results obtained by us for aspecific case of perturbation of bicritical hyperbolic polynomials (D_\lambda = z^{n+1}- az^{n} + \frac{\lambda}{z^d} for fixed a belonging to a specific hyperbolic component of the parameter plane of M_a = z^{n+1} - az^{n},\lambda small enough and n,d natural numbers such that \frac{1}{n}+\frac{1}{2}<1).

Si voleu estar al cas de les xerrades previstes, podeu consultar el calendari. Si voleu proposar una xerrada, ompliu el formulari. Si voleu contactar amb els responsables podeu escriure un missatge a seminari(dot)simba(at)ub(dot)edu.

Escriu un comentari

Fill in your details below or click an icon to log in: Logo

Esteu comentant fent servir el compte Log Out /  Canvia )

Facebook photo

Esteu comentant fent servir el compte Facebook. Log Out /  Canvia )

S'està connectant a %s