Blog de la Biblioteca de Matemàtiques i Informàtica

SIMBa: ¿How far is an extension of $p$-adic fields from having a normal integral basis?

Deixa un comentari


El proper dimecres, 10 de març, se celebrarà una nova xerrada —en format virtual— del Seminari Informal de Matemàtiques de Barcelona (SIMBa).

Speaker: Fabio Ferri
Universitat: University of Exeter

Data: Wednesday, March 10th, 2021.
Hora: 12:00,virtual coffee break; 12:20, talk.
Lloc: Zoom (the link will be posted on our website).
Idioma: English.

Títol: ¿How far is an extension of p-adic fields from having a normal integral basis?
Resum: Let L / K be a Galois extension of p -adic fields with Galois group G. Denote by K[G] the group ring \left\{\sum_{g \in G} a_{g} g: a_{g} \in K\right\} ; the classical normal basis theorem shows that L is a free K[G] -module of rank 1 . that is, there exists an element \alpha \in L such that \{g(\alpha)\}_{g \in G} is a basis of L as a K -vector space. It is natural to ask whether \mathcal{O}_{L} is also a free \mathcal{O}_{K}[G] -module of rank 1 , where \mathcal{O}_{L} and \mathcal{O}_{K} denote the rings of integers of L and K, respectively. A theorem of Noether tells us that this is the case if and only if the extension is (at most) tamely ramified. When L / K is wildly ramified, we can still note that there always exists a free \mathcal{O}_{K}[G] -submodule of \mathcal{O}_{L} with finite index. The purpose of this talk is to study the minimal such index, i.e. the quantity m(L / K):= \min _{\alpha \in \mathcal{O}_{L}}\left[\mathcal{O}_{L}: \mathcal{O}_{K}[G] \alpha\right] . We will provide a general bound that only depends on the invariants of the extension, a complete formula for m(L / K) when L / \mathbb{Q}_{p} is abelian and a complete formula when L / K is cyclic of degree p. This is joint work with Ilaria Del Corso and Davide Lombardo.


Si voleu estar al cas de les xerrades previstes, podeu consultar el calendari. Si voleu proposar una xerrada, ompliu el formulari. Si voleu contactar amb els responsables podeu escriure un missatge a seminari(dot)simba(at)ub(dot)edu.

Escriu un comentari

Fill in your details below or click an icon to log in: Logo

Esteu comentant fent servir el compte Log Out /  Canvia )

Twitter picture

Esteu comentant fent servir el compte Twitter. Log Out /  Canvia )

Facebook photo

Esteu comentant fent servir el compte Facebook. Log Out /  Canvia )

S'està connectant a %s