Blog de la Biblioteca de Matemàtiques i Informàtica

SIMBa: Osculating spaces and Lefschetz properties

Deixa un comentari

SIBMa

El proper dimecres, 14 de novembre, se celebrarà una nova xerrada del Seminari Informal de Matemàtiques de Barcelona (SIMBa).

Speaker: Martí Salat Moltó
Universitat: Universitat de Barcelona

Data: Dimecres, 14 de novembre de 2018
Hora: 13:00, cafè; 13:20, xerrada
Lloc: Aula B1 Facultat de Matemàtiques de la Universitat de Barcelona.
Idioma: Castellà

Títol: Osculating spaces and Lefschetz properties
Resum: Let X \in \mathbb{P}^N be an algebraic variety. The sth osculating space of X at a point p \in X is the vector space T_{p}^{(s)}X spanned by all the sth partial derivatives of a local parametrization of X at p. Hence it can be seen as a natural generalization of the well-known notion of tangent space. It is a wide and longstanding problem to study and classify varieties whose osculating space is defective (i.e. it does not reach the maximal dimension).
In the first part of this talk we will recall the notion of osculating space and we will see some examples. In the second part we will explore the connection made by Mezzetti, Ottaviani and Miró-Roig. This connection explains why some varieties have a defective osculating space by means of the –a priori unrelated notion– of the weak Lefschetz property. This result motivates the definition of Togliatti systems. Finally, if the time allows us to do so, we will give an insight to the classification problem of Togliatti systems using combinatorial methods of Toric varieties.

Si voleu estar al cas de les xerrades previstes, podeu consultar el calendari. Si voleu proposar una xerrada, ompliu el formulari. Si voleu contactar amb els responsables podeu escriure un missatge a seminari(dot)simba(at)ub(dot)edu.

Deixa un comentari

Fill in your details below or click an icon to log in:

WordPress.com Logo

Esteu comentant fent servir el compte WordPress.com. Log Out /  Canvia )

Google+ photo

Esteu comentant fent servir el compte Google+. Log Out /  Canvia )

Twitter picture

Esteu comentant fent servir el compte Twitter. Log Out /  Canvia )

Facebook photo

Esteu comentant fent servir el compte Facebook. Log Out /  Canvia )

S'està connectant a %s