Blog de la Biblioteca de Matemàtiques i Informàtica

SIMBa: A walk through the Birch and Swinnerton-Dyer conjecture

Deixa un comentari

SIBMa

El proper dimecres, 4 de novembre, se celebrarà una nova xerrada —en format virtual— del Seminari Informal de Matemàtiques de Barcelona (SIMBa).

Speaker: Óscar Rivero Salgado.
Universitat: Universitat Politècnica de Catalunya.

Data: Wednesday, November 4th, 2020.
Hora: 2:00,virtual coffee break; 12:20, talk.
Lloc: Zoom (L’enllaç apareixerà al web del SIMBA el mateix dia de cada xerrada.)
Idioma: English

Títol: A walk through the Birch and Swinnerton-Dyer conjecture.
Resum: The Birch and Swinnerton-Dyer conjecture is one of the seven millennium problems posed by the Clay Mathematics Institute. There have been many different approaches along the last decades, but it still remains open. The conjecture relates the rank of an elliptic curve with the order of vanishing of a complex L-function, and it has been proved when the latter is at most one. At this point, there is a natural question posed by Mazur, Tate and Teitelbaum during the eighties: why dowe look at the complex L-function? What about the L-functions attached to other non-archimedian completions of the rational numbers? This question will move us to the p-adic world, where new phenomen aappear, leading us to suggestive points of view about the conjecture

 

Si voleu estar al cas de les xerrades previstes, podeu consultar el calendari. Si voleu proposar una xerrada, ompliu el formulari. Si voleu contactar amb els responsables podeu escriure un missatge a seminari(dot)simba(at)ub(dot)edu.

Escriu un comentari

Fill in your details below or click an icon to log in:

WordPress.com Logo

Esteu comentant fent servir el compte WordPress.com. Log Out /  Canvia )

Google photo

Esteu comentant fent servir el compte Google. Log Out /  Canvia )

Twitter picture

Esteu comentant fent servir el compte Twitter. Log Out /  Canvia )

Facebook photo

Esteu comentant fent servir el compte Facebook. Log Out /  Canvia )

S'està connectant a %s