Blog de la Biblioteca de Matemàtiques i Informàtica


Deixa un comentari

Lectures confinades: Apologia d’un matemàtic

Apologia d'un matemàticHardy, Godfrey Harold. Apologia d’un matemàtic / Godfrey H. Hardy. El paper de la matemàtica en les ciències i la societat / John von Neumann. Semblança de G. H. Hardy / Charles P. Snow. Introducció a l’Apologia de G. H. Hardy / Josep Pla i Carrera ; traducció Mònica Merín i Sales. Santa Coloma de Queralt : Obrador Edèndum ; [Tarragona] : Publicacions URV, 2008.

Aquesta deliciosa edició de 2008, malauradament fora d’estoc, no conté només l’obra crepuscular de Godfrey H. Hardy sinó que es complementa amb tres textos més: la conferència que va pronunciar John von Neumann a Princeton el juny de 1954 —The Role of Mathematics in the Sciences and in Society—, la Semblança de Charles P. Snow —químic, novel·lista i amic íntim de Hardy— i, finalment, la Introducció a l’Apologia, a càrrec del Dr. Josep Pla i Carrera, especialista en lògica i història de la matemàtica i bon amic de la biblioteca.

És d’alguna manera una edició composta de quatre obres complementàries que, llegides d’una tirada, ajuden a entendre el context històric, polític i social, però sobretot personal, d’un Hardy a la seixantena, conscient d’haver perdut la seva capacitat per a la matemàtica pura. La tristesa i el pessimisme planen sobre tota l’obra.

Godfrey Harold Hardy al Trinity College | Fotografia de la Biblioteca del Trinity College

El volum tracta principalment la dicotomia entre la matemàtica pura i la matemàtica aplicada, «el contrast entre la visió aristocràtica i la visió productiva». D’aquí la inclusió de la conferència de von Neumann com a contrapunt a l’obra de Hardy. Els dos matemàtics discrepen en la concepció que tenen de la matemàtica, no només pel que fa a la utilitat, també quant a la seva naturalesa. Hardy creu que «hi ha una realitat matemàtica fora de nosaltres, que la nostra funció es descobrir-la i observar-la, i que els teoremes que demostrem i que descrivim amb grandiloqüència com si fossin “creacions” nostres són només les notes preses en les nostres observacions». Von Neumann, en canvi, afirma que «no és necessàriament veritat que el mètode matemàtic sigui quelcom d’absolut, revelat des de les altures, o que sigui quelcom que ara se’ns mostra evidentment correcte perquè des de sempre ha estat evidentment correcte». Malgrat la discrepància profunda, però, ambdós coincideixen en una qüestió fonamental: el motor de la matemàtica és la bellesa, l’elegància intel·lectual. En paraules de von Neumann «…fou seguint aquesta regla com realment es progressà a la llarga».

Introducció i context a càrrec del Dr. Pla

El Dr. Pla aborda la Introducció contextualitzant-la, no només des de la vessant històrica i política, també des de la situació científica anterior a la publicació de l’Apologia, l’any 1940. Dels vint-i-tres problemes de Hilbert, al naixement de Nicolas Bourbaki, passant pel teorema de Gödel o la relativitat d’Einstein, a la situació posterior, en el marc de la Segona Guerra Mundial, quan es va fer evident que la ciència —especialment tot allò lligat al desenvolupament de l’energia nuclear— podia causar una devastació mai vista abans.

Situat el text en les coordenades històriques precises, continua Pla destacant els aspectes que considera clau per poder-ne fer una anàlisi crítica: la vida intel·lectual com a darrera justificació (o autojustificació); la dualitat matemàtica pura vs. matemàtica aplicada; el formalisme i la bellesa de la matemàtica; la responsabilitat de la matemàtica i del matemàtic.

Com a conclusió final destaca l’autojustificació que fa Hardy, ja no d’un matemàtic inconcret i hipotètic, sinó d’ell mateix; de la seva vida lligada a la capacitat creativa que ha pogut desenvolupar durant tants anys —especialment durant el període de col·laboració amb Ramanujan i Littlewood— i que ara flaqueja. L’Apologia seria, doncs, un comiat, un testament: finida la vida intel·lectual «que és la que per a ell, compta» sent la necessitat tan d’acomiadar-se com de justificar la seva existència.


L’amic explica l’home

Godfrey H. Hardy a la dècada de 1890. Fotografia de Domini públic

Charles Percy Snow, químic, novel·lista i amic íntim de Hardy, traça un emotiu perfil de l’home, de l’amic. Es remunta a la seva infantesa i al desvetllament precoç d’una gran intel·ligència: «als dos anys escrivia xifres de milions, un signe d’habilitat matemàtica. Quan el duien a l’església, s’entretenia factoritzant els nombres…», acompanyada d’una educació victoriana exquisida i culta, però matisada per una gran timidesa que el duria al punt d’intentar fallar expressament determinades preguntes als exàmens per estalviar-se el tràngol de recollir els premis que guanyava.

Als 12 anys va obtenir una beca per anar a Winchester, on hi havia l’escola de matemàtica més reputada del moment, però no s’hi va estar gaire: gaudia de les classes però rebutjava la severitat victoriana. D’allà va marxar al Trinity College, també becat, on als 22 anys va assolir la posició de fellow. Als 33 va ser nomenat membre de la Royal Society.

L’any 1911 va iniciar «la col·laboració més famosa de la història de la matemàtica» amb John Edensor Littlewood que duraria 35 anys; i dos anys després, la no menys coneguda col·laboració amb un oficinista desconegut, sense formació matemàtica, que li va enviar una carta des de Madràs: Srinivasa Aiyangar Ramanujan. En paraules de Snow: «Hardy decidí que Ramanujan era un geni naturalment dotat per a la matemàtica, del mateix nivell que Gauss i Euler.»

Quan es publicà per primera vegada l’«Apologia d’un matemàtic», Graham Greene digué en una ressenya que el text, juntament amb els quaderns de Henry James, era la millor descripció del que representa ser un artista creatiu.

Charles P. Snow

Explica Snow que la relació entre Hardy i Ramanujan va ser «estranyament emotiva»: Hardy va tenir sempre present que es trobava davant d’un geni que no havia pogut adquirir coneixements de matemàtica formal. De la seva relació fructífera en van sortir articles de molt alt nivell i aviat Ramanujan va entrar a formar part de la Royal Society, el mateix any que el Trinity College el nomenava fellow. Però la seva salut, sempre delicada, es va ressentir del trasllat al Regne Unit i l’escassetat de fruites i verdures durant la guerra. Va emmalaltir de tuberculosi, cosa que el va dur a tornar a l’Índia, on moriria al 1919.

Ramanujan (centre) i Hardy (dreta) amb altres col·legues a Cambridge | Fotografia de domini públic

Aquell mateix any Hardy va acceptar una càtedra que li oferien a Oxford. Deixava enrere un període de tristesa només atenuat per la col·laboració amb Ramanujan. Germanòfil convençut i ferm detractor de la confrontació bèl·lica, de la qual acusava als polítics anglesos, creia, com Bertrand Russell, que la guerra no s’hauria d’haver produït mai. Russell va ser expulsat del Trinity, episodi que Hardy relataria 25 anys després a Bertrand Russell and Trinity.

Els anys 20 representaren per a Hardy una etapa de plenitud i de felicitat. La col·laboració amb Littlewood va arribar al seu punt àlgid, l’ambient al New College d’Oxford li era molt propici, va cultivar les amistats i les converses de sobretaula, els esports. D’alguna manera va viure el mateix miratge que tota la societat occidental, convençuda que les desgràcies de la guerra eren cosa passada.

L’any 1931, però, va decidir tornar a Cambridge. Sembla que la raó que l’hi va empènyer era de caire professional: el centre de la matemàtica anglesa continuava sent Cambridge. La càtedra més important era allà. Però Snow apunta també una altra raó, aquesta personal: Hardy ja pensava en la seva vellesa. Si es quedava al New College, tan aviat com es jubilés hauria d’abandonar les seves habitacions. En canvi, si se’n tornava al Trinity College, s’hi podia quedar fins que morís.

L’any 1939 tot va començar a canviar: va patir una trombosi coronària i va haver de deixar el tennis, esport que l’apassionava. L’ esclat de la Segona Guerra Mundial el va acabar d’aclaparar, com ja havia fet la primera. La constatació que la capacitat per a la creativitat matemàtica l’havia abandonat el va acabar d’enfonsar. Des de llavors l’ombra de la depressió el va acompanyar fins al darrer dia.

Escric sobre matemàtica perquè, com qualsevol altre matemàtic que hagi passat la seixantena, ja no tinc ni el cap prou clar, ni prou energia o paciència per tirar endavant la meva feina de manera eficaç.

Godfrey H. Hardy

Apologia d’un matemàtic

Com ja hem comentat, Apologia d’un matemàtic és un text d’autojustificació, en el sentit de valorar la tasca de tota una existència. Hardy hi defensa la seva vida, la intel·lectual, la creativa, i alhora, la seva responsabilitat.

He de dir, d’entrada, que en defensar la matemàtica em defensaré a mi mateix, i que, per consegüent, la meva apologia tindrà alguna cosa d’egoista. És clar que no podria pensar que val la pena fer apologia del meu camp d’estudi si cregués que jo sóc un dels qui hi han fracassat.

Godfrey H. Hardy

Al llarg de les pàgines repeteix amb recança i resignació que l’edat és cabdal per a la creació matemàtica, que «Cap matemàtic no pot oblidar que la matemàtica, més que cap altra ciència o art, és cosa de joves». Ho diu passada la seixantena, en plena depressió i conscient que el seu temps —insistim, el creatiu— arriba a la fi.

Galois morí als vint-i-un anys, Abel morí als vint-i-set, Ramanujan als trenta-tres, Riemann als quaranta […]. No conec cap exemple d’avenços matemàtics importants que els hagi fet algú que passés dels cinquanta.

Godfrey H. Hardy

Un altra idea que es fa present fa referència a la responsabilitat del matemàtic, inferint que la matemàtica és inofensiva i innocent, a banda d’inútil —en el sentit pràctic, no intel·lectual. Ja apunta que hi ha molts col·legues que en discrepen. L’experiència de la Primera Guerra Mundial i, sobretot, de la segona, matisarien aquesta afirmació, però no podem oblidar que el llibre és de 1940, quan la devastació i l’horror encara no s’havien mostrat en total plenitud, i que la postura de Hardy va ser sempre, en ambdós casos, radicalment contrària a la guerra.

Les raons per dedicar-se a la recerca són fonamentalment tres: la curiositat intel·lectual, l’orgull professional —la satisfacció de la pròpia feina— i l’ambició. La matemàtica doncs, proporcionaria el millor camp possible, no només perquè obliga a desenvolupar al màxim les habilitats sinó també perquè els resultats són els més perdurables.

La recerca de la bellesa, l’elegància, són el motor de la matemàtica: «la matemàtica lletja no pot perdurar enlloc». No hem de buscar-hi cap utilitat que no sigui exclusivament intel·lectual, perquè «la part de la matemàtica que té una utilitat pràctica és molt reduïda i, a més, força avorrida». Aquesta concepció referma la defensa aferrissada de la matemàtica pura davant de la matemàtica aplicada. Hi hauria doncs una matemàtica autèntica desenvolupada per matemàtics autèntics i una matemàtica trivial. La primera, la seva, seria equiparable a l’art. La segona, la que és útil, seria la que té certa incidència en la vida. És aquí on arribem al quid: «Hi ha una conclusió que per a un matemàtic autèntic és senzilla i reconfortant: la matemàtica autèntica no té cap repercussió sobre la guerra. Ningú no ha descobert encara cap aplicació militar per a la teoria dels nombres o la de la relativitat, i sembla altament improbable que ningú ho aconsegueixi en molts anys». Les branques de la matemàtica aplicada usades en la guerra —balística, aerodinàmica— no serien exactament trivials però, per descomptat, tampoc autèntiques. Són «repulsivament lletges i intolerablement tedioses».

Allò que justifica la meva vida, o la de qualsevol altre que hagi estat matemàtic en el mateix sentit en què jo ho he estat, és el següent: he engrandit el nostre coneixement i he ajudat els altres a engrandir-lo.

Godfrey H. Hardy

El paper de les matemàtiques en la ciència i en la societat

Com ja hem esmentat —i resumit—, el contrapunt a la visió de Hardy l’aporta John von Neuman amb la transcripció de la conferència que va impartir a Princeton l’any 1954 —14 anys després del text de Hardy.

Von Neumann és un ferm defensor de la utilitat de la matemàtica, de la seva presència en tots els àmbits de la nostra vida: «si ens fixem en el paper que la ciència té en la vida quotidiana o en el treball de les altres ciències, descobrim una cosa sorprenent. Hi ha àmplies àrees de la matemàtica que han estat d’allò més útils des del punt de vista pràctic». No obstant, aquesta utilitat no ha estat preconcebuda o buscada explícitament, car «en totes les ciències s’ha esdevingut que els èxits han arribat quan hom s’ha desentès completament d’allò que cercava o quan hom ho ha deixat, simplement, de banda; quan hom ha renunciat a investigar allò que podia ser útil i s’ha guiat exclusivament per criteris d’elegància intel·lectual».

Trobareu dos exemplars del llibre disponibles al catàleg.


Deixa un comentari

Dimarts ens va deixar el Doctor Vaquer als 92 anys

Josep Vaquer i Timoner, fotografia de Catalunya Religió
Josep Vaquer i Timoner
(Maó, 1 de juliol de 1928 — Barcelona, 24 de març de 2020)

Fotografia de Catalunya Religió

Dimarts 24 de març va morir a casa seva, a Barcelona, el Doctor Josep Vaquer i Timoner. Tenia 92 anys.

Llicenciat per la Universitat de Barcelona (UB) l’any 1954, va obtenir el premi extraordinari de llicenciatura. Sis anys després, al 1960, es va doctorar a la mateixa universitat amb la tesi Sobre la parte p-fundamental del grupo de Brauer, dirigida per Joan Augé Farreras. L’any següent va obtenir la Càtedra de Geometria mètrica i Geometria diferencial a la pròpia UB.

Especialista en àlgebra i geometria diferencial, va treballar al Seminari Matemàtic d’Hamburg —amb Ernest Witt— i a l’Institut Politècnic de Zuric. Va col·laborar amb Josep Teixidor i Batlle en la modernització metodològica de l’ensenyament de la matemàtica a l’Estat i va tenir un paper molt rellevant en l’organització de les Olimpíades Matemàtiques al llarg dels anys, ja fos buscant i elaborant problemes o exercint com a president del tribunal.

Va ser secretari de la revista Collectanea Mathematica i també degà de la Facultat de Matemàtiques de la UB de 1976 a 1978; president de la Societat Catalana de Matemàtiques (SCM) de 1991 a 1995 i membre numerari de l’Institut d’Estudis Catalans (IEC), adscrit a la Secció de Ciències i Tecnologia, des de 1989.

L’olimpíada matemàtica

A principis dels anys 60 hi havia pocs estudiants que es decantessin per estudiar matemàtiques. És per això que la Real Sociedad Matemática Española (RSME) es va empescar una mena de concurs amb l’objectiu d’estimular vocacions i omplir les aules. Organitzades en 12 districtes, els guanyadors de cada edició rebien una beca si emprenien els estudis de matemàtiques.

La RSME va encarregar al Doctor Francesc Sales, vicepresident aleshores de la societat, que organitzés l’olimpíada a Catalunya i aquest va demanar a Vaquer que li donés un cop de mà. Amb el temps, i d’una manera natural però extraoficial, seria la SCM qui organitzaria el certamen al Principat, fins que amb la presidència de Sebastià Xambó es va demanar que l’acord tàcit es posés per escrit, a la qual cosa la RSME no va s’hi va oposar.


Mentre els problemes dels altres no siguin també els teus problemes, el món no pot funcionar.

Josep Vaquer i Timoner

Vaquer va intentar descentralitzar tant com va poder la celebració de les proves. Malgrat que el districte el formaven Catalunya i Balears, els exàmens es feien sempre a Barcelona, amb la dificultat afegida que això tenia per a tots els participants que s’havien de desplaçar. Va aconseguir que a Girona, Lleida i Tarragona s’hi formés un tribunal, tot i que al final s’hi presentarien pocs candidats. Més tard va voler estendre encara més la presència de les proves al llarg del país —Manresa, Vic, Tortosa, Mallorca…—, però el projecte no va reeixir

Aire fresc per a l’ensenyament de la matemàtica

Curso de matemáticasJa abans d’ocupar la càtedra l’any 1961, Vaquer estava convençut que calia renovar l’ensenyament de les matemàtiques, però no gosava fer-ho sol. Quan Teixidor, que era catedràtic, li va proposar d’emprendre junts aquella tasca, Vaquer no ho va dubtar. Van començar a introduir la matemàtica moderna amb la guia de Bourbaki i d’aquesta manera va néixer el Curso de matemáticas, conegut popularment com a «Teixidor-Vaquer», que esdevindria la porta d’entrada de molts estudiants a la llicenciatura.

En opinió de Vaquer, l’ensenyament universitari havia de tenir en compte els alumnes que esdevindrien catedràtics, però sense perdre de vista que la majoria no ho serien i que s’ocuparien d’una altra tasca, no menys important. Calia que la universitat se centrés en ensenyaments bàsics, que construís els fonaments per tal que els llicenciats en sortissin capacitats per aprendre el que els calgués durant la seva vida professional.


El meu pare em va preguntar en què consistia allò que, en aquella època, s’anomenava, amb molta naturalitat i superficialitat, «matemàtica moderna». Jo li vaig regalar un exemplar del text de Teixidor-Vaquer. Un vespre, després de sopar —ho recordo com si fos ara— ens vam posar a mirar-lo i comentar-lo una mica per sobre per veure quines qüestions tractava, i en aquell moment me’n vaig adonar.

Josep Pla i Carrera a Aproximació heurística, històrica, docent i personal al teorema fonamental de l’àlgebra

Obituaris i mostres de condol





Altres mostres de condol a Twitter

Més informació

Josep Vaquer amb la seva dona, també matemàtica, Mercè Guilemany
Josep Vaquer amb la seva dona, també matemàtica, Mercè Guilemany.
Fotografia de Catalunya Religió


Deixa un comentari

Hem digitalitzat la tesi doctoral de Ferran Sunyer i Balaguer

Avui fa justament 56 anys que Ferran Sunyer i Balaguer defensava la tesi doctoral davant del tribunal presidit per Josep Maria Orts. Dipositada des d’aleshores a la Universitat de Barcelona, no ha estat fins ara que l’hem digitalitzat —amb el vist-i-plau de la Fundació Ferran Sunyer i Balaguer (FFSB), que és qui n’ostenta els drets— i l’hem dipositat a TDX per facilitar-ne la consulta.

Sobre la distribución de los valores de una función representada por una serie de Dirichlet lagunar

Sobre la distribución de los valores de una función representada por una serie de Dirichlet lagunarQui era Ferran Sunyer?

Ferran Sunyer i BalagueAntoni Malet en va escriure una biografia, extensa i profusament documentada, que va editar l’IEC l’any 1995. La trobareu al catàleg, si la voleu llegir en paper o en pdf al web de la FFSB. Josep Pla i Carrera, a petició nostra, n’escrivia aquest breu apunt amb motiu del centenari, l’any 2012:

Ferran va néixer amb una atròfia gairebé total del sistema nerviós que el mantingué gairebé paralític del tot —fet que l’impossibilitava de poder escriure— i el condemnava, de per vida, a l’esclavatge de la cadira de rodes i d’un mitjà de transport, amb xofer, que pogués dur-los a tots dos i ajudar-lo a ell.

Ell mateix ho va escriure a A. J. Macintyre [carta de 31 de març de 1959]:

Com ja li vaig dir, pateixo d’una paràlisi que m’impedeix caminar i m’obliga a moure’m en una cadira de rodes, les dimensions de la qual, i el fet de ser plegable, em permeten de viatjar en cotxe (tren, etc.) així com fer servir els ascensors. No puc pujar tot sol una escala.

I tanmateix l’atròfia no li va afectar el cervell que es va mostrar molt ben moblat per comprendre la física i la matemàtica. Tenia una gran capacitat per elaborar els seus resultats sense recórrer a l’escriptura i una gran memòria de retenció que li permetia de dictar-los.

Però per aconseguir que, amb aquestes limitacions, els seus resultats matemàtics arribessin a algunes revistes de matemàtiques —en castellà, francès i anglès— calien dues coses. D’una banda, un ambient casolà adequat i tranquil que li permetés de minimitzar les dificultats inherents a la malaltia. Això ho aconseguí a un principal del carrer Àngel Guimerà, a Sarrià, gràcies a la dedicació de la mare, Àngela Balaguer i Masdevall —havia perdut l’espòs i pare de Ferran, Ricard Sunyer i Molinas, quan l’infant tenia dos anys.

D’altra banda una col·laboració incondicional i continuada d’algú prou dedicat i que es mantingués a l’ombra. La vida havia fet que, amb ell i la mare, hi visquessin dues cosines, Maria i Àngela Carbona i Balaguer, que van aconseguir que, malgrat les dificultats vitals, la vida de Ferran fos molt més planera del que hauria estat sense elles. I li va permetre de disposar d’amanuenses bondadoses i compromeses en l’obra professional de matemàtic.

En definitiva, vaig pensar que, en aquella època, primera meitat del segle XX, l’èxit matemàtic a Ferran li pertany, però no li hauria estat possible assolir-lo sense l’esforç d’altres familiars que van fer possible una certa normalitat dins l’anormalitat.

Josep Pla i Carrera. Presentació de l’exposició Centenari del naixement de Ferran Sunyer i Balaguer, 1912-2012

Més informació


Deixa un comentari

Matemàtics catalans: Pere Puig Adam (1900-1960)

Pere Puig Adam (1900-1960)Just abans de Nadal vam publicar la segona exposició monogràfica de la sèrie Matemàtics catalans, aquest cop dedicada a Pere Puig Adam.

La mostra repassa extensament la biografia del matemàtic barceloní, fent èmfasi en la seva etapa universitària —il·lustrada amb documents procedent de l’Arxiu Històric—, l’etapa com a docent a Madrid —interrompuda per la guerra—, i el reconeixement a la seva obra.

S’hi inclou un extens recull bibliogràfic, format majoritàriament per monografies i articles científics, a banda d’un parell de referències corresponents a partitures que harmonitzà. Per completar-ho, hem recollit també bibliografia sobre la seva figura, publicada per diferents especialistes en mitjans diversos.

Finalment hi trobareu una petita secció dedicada als elements gràfics: cites, el decàleg de la matemàtica mitjana i la línia del temps, que reflecteix la seva trajectòria.

L’exposició virtual és la darrera de les activitats en què hem participat, emmarcada en la Iª Jornada de didàctica de les matemàtiques —organitzada pel Grup Cúbic— que es va celebrar a la Facultat de Matemàtiques i Informàtica el 17 de novembre de 2017.

Com a colofó, i fins el dia 30 de gener, podeu veure una selecció de les obres de Pere Puig Adam i dels seus materials per a l’aula de matemàtiques, exposats a la vitrina de la biblioteca.

Aquesta presentació amb diapositives necessita JavaScript.

Més informació


1 comentari

Iª Jornada de didàctica de les matemàtiques

Omnipoliedre C2EM

Omnipoliedre construït al vestíbul de l’Edifici històric amb motiu del Congrés Català d’Educació Matemàtica, celebrat el juliol de 2017. Fotografia del CRAI Biblioteca de Matemàtiques i Informàtica, sota llicència CC-BY

Vitrina de la Biblioteca amb materials per a l'aulaDivendres 17 de novembre se celebrarà a la Facultat de Matemàtiques i Informàtica de la Universitat de Barcelona la Iª Jornada de didàctica de les matemàtiques, sota el títol Materials per a l’aula de matemàtiques :  recordant Puig Adam en els 60 anys de la seva exposició de materials en ocasió de la XIa reunió del CIEAEM.

En col·laboració amb el  Grup de didàctica de la Facultat de Matemàtiques i Informàtica (Grup Cúbic), el CRAI Biblioteca de Matemàtiques i Informàtica ha organitzat l’exposició bibliogràfica Pere Puig Adam (1900-1960), que s’inaugurarà dimecres 15 de novembre i es clausurarà el 30 de gener de 2018. Les obres exposades formen part dels fons bibliogràfics de la UB, especialment dels CRAI Biblioteca de Matemàtiques però també dels CRAI Biblioteca Campus de Mundet, Física i Química i Filosofia, Geografia i Història. També s’exposaran algunes obres sobre les harmonitzacions musicals que va fer la llarg de la vida.

Per completar l’exposició, Cúbic ha preparat una petita mostra, Materials per a l’aula de matemàtiques, que s’exposarà a la vitrina, just a l’entrada. Hem començat també a treballar en l’exposició virtual sobre Puig Adam, emmarcada en el projecte Matemàtics catalans, que vam inaugurar abans de l’estiu amb Lauro Clariana. Tan aviat com la publiquem, en farem la difusió pertinent.

Programa de la jornada

  • A partir de les 16:00 h. Visita optativa a la mostra de llibres i materials de Pere Puig Adam, a la Biblioteca de la Facultat de Matemàtiques i Informàtica.
  • 17:00 h. Presentació de la jornada i benvinguda del Degà de la Facultat.
  • 17:10 h. Conferència inicial: Pere Puig Adam, un professor referent, a càrrec de Claudi Alsina.
  • 17:40 h. Reflexions entorn al decàleg de Pere Puig Adam, a càrrec del grup Cúbic.
  • 18:00 h. Mostra de l’activitat del mosaic de Puig Adam i generalització a Patternblocks.
  • 18:30 h. Puig Adam i les còniques: taller de còniques
    • Còniques plegant paper
    • Rebots en còniques
    • Tallant cilindres
    • Construcció de còniques amb cordill i regles
  • 19:50 h. Cloenda.

La inscripció estarà oberta fins dimecres 15 de novembre.


Deixa un comentari

Ha mort Maryam Mirzakhani als 40 anys

Maryam Mirzakhani

Maryam Mirzakhani va morir a Stanford el 15 de juliol a causa d’un càncer de pit que li havien diagnosticat l’any 2013 i que s’havia reproduït tres vegades des d’aleshores. La seva mort, tan prematura, ha commogut la comunitat científica d’arreu del món.

Va ser la primera dona, i l’única encara, en guanyar la Medalla Fields, que atorga la Unió Matemàtica Internacional (IMU, en les sigles angleses). Li van concedir el guardó per «les contribucions destacades a la dinàmica i la geometria de les superfícies de Riemann i els seus espais de mòduls». Nascuda i criada a l’Iran, i en el moment de la seva mort investigadora de la Universitat de Stanford (Califòrnia), va ser proclamada guanyadora el 13 d’agost de 2014 a la cerimònia celebrada a Seül, durant el Congrés Internacional de Matemàtics (ICM2014), que organitza cada 4 anys la IMU.

La majoria de problemes a què em dedico tenen relació amb estructures geomètriques en superfícies i les seves deformacions. Estic especialment interessada en superfícies hiperbòliques. A vegades, les propietats d’una superfície hiperbòlica fixa es poden entendre millor estudiant l’espai modular (moduli space) que parametritza totes les estructures hiperbòliques en una superfície topològica determinada.

Maryam Mirzakhani va néixer el 1977 a Teheran, en un ambient agradable (malgrat la guerra Iran-Iraq) i amb uns pares que l’encoratjaven i li donaven suport. De ben joveneta es va decantar més per la literatura, però va ser a l’últim curs de secundària que va començar a interessar-se per les matemàtiques, empesa una mica pel seu germà gran, que li explicava el que aprenia a l’escola. El primer record que conservava referent a les matemàtiques, és l’impacte que li va causar la història de la resolució del problema de l’addició dels números, de l’1 al 100. Quan Gauss era un nen, el seu professor va plantejar a classe el problema consistent en sumar tots els números naturals, de l’1 al 100. Gauss va ser el primer a trobar la solució: 5050. Aquella solució, bella i elegant, vas fascinar Mirzakhani. L’any 1994 va guanyar una medalla d’or a la Olimpíada Internacional de Matemàtiques i el 1995 dues.

Hi ha vegades que em sento com si fos en un gran bosc, sense saber cap on vaig. Però d’alguna manera pujo fins al cim d’un turó des d’on ho puc veure tot amb més claredat. Quan això passa, és realment emocionant.

El 1999 es va llicenciar en Matemàtiques la Universitat de Sharif i el 2004 es va doctorar a la Universitat de Harvard. Els seus camps d’estudi eren l’espai de Teichmüller, la geometria hiperbòlica, la teoria ergòdica i la geometria simplèctica.

Marc Tessier-Lavigne, president d’Stanford, va dir en saber-se la notícia que «encara que Maryam havia marxat massa aviat, el seu impacte duraria per sempre en els milers de dones que ella havia inspirat a treballar en l’àmbit de les matemàtiques». Considerada una de les ments matemàtiques més destacables de les darreres dècades, serà recordada com una gran pionera en tot allò que va tenir a l’abast. Com a dona, com a iraniana i com a matemàtica.

Més informació:


Deixa un comentari

Matemàtics catalans: Lauro Clariana Ricart

Matemàtics catalansMatemàtics catalans és el nom col·lectiu d’un projecte que iniciem enguany sobre alguns matemàtics catalans de totes les èpoques, reconeguts per les seves vessants professional, docent o investigadora. La iniciativa vol posar de relleu la tasca dels matemàtics relacionats amb la Universitat de Barcelona, per haver-ne estat alumnes, professors, o per haver exercit algun càrrec en l’estructura acadèmica.

Matemàtics catalans té l’objectiu de difondre els fons bibliogràfics de la UB i reconèixer la història i la trajectòria de la institució i de les persones que n’han format part. Per donar el màxim de visibilitat a la informació recollida —difícil d’aplegar des de fora de la UB—, el projecte contempla una exposició per a cada matemàtic seleccionat, que completarem amb la corresponent biografia a la Viquipèdia, ja sigui editant-la i ampliant-la o redactant-la de zero, com en aquest cas.

Lauro Clariana Ricart

Lauro Clariana Ricart (1842-1916))

Lauro Clariana, matemàtic i enginyer industrial especialitzat en mecànica, va començar a exercir la docència l’any 1861 fent substitucions en diverses càtedres. Just aquell mateix any es va matricular per primera vegada a la Facultat de Ciències de la Universitat de Barcelona. El 1869 va defensar la tesi doctoral —Discurso sobre la Teoría general del movimiento en las máquinas desarrollado por D. Lauro Clariana en el ejercicio del doctorado correspondiente a la sección de Ciencias Exactas— i l’any següent va ser nomenat catedràtic numerari de Matemàtiques a l’Instituto de Segunda Enseñanza de Tarragona. L’any 1881 va accedir a la càtedra de Cálculo Diferencial e Integral de la Facultat de Ciències de la UB. Des d’aquell moment i fins a la seva mort, va continuar exercint-hi la docència, compaginant-la amb les classes a l’Escola Industrial i la seva tasca com a acadèmic numerari a la Reial Acadèmia de Ciències i Arts de Barcelona (RACAB). Va morir l’11 d’octubre de 1916 a Barcelona.

La seva carrera docent es va perllongar fins al moment de la mort, havent sol·licitat en diverses ocasions al rector que li permetés continuar la docència, tot i haver superat l’edat màxima permesa. Amb una extensa obra publicada, va ser mereixedor de nombroses distincions (pdf) i ocupà diversos càrrecs en l’escalafó universitari.

Matemàtics catalans: Lauro Clariana (1842-1916)

Biografia a la Viquipèdia

El matemàtic i astrònom Louis Godin s’afegeix a la nostra base de dades d’Antics Posseïdors

Deixa un comentari

Blog de Reserva

Tal i com us anem informant mensualment, la Base de Dades d’Antics Posseïdors  va creixent mica en mica. Com sabeu, a mesura que anem catalogant llibres, tots els antics propietaris institucionals queden inclosos a la base de dades. Per contra, en el cas de persones individuals, només s’inclouen les que es consideren rellevants per diversos motius, fet pel qual molts personatges, degut al seu caire anònim, queden descartats.

A vegades, però, tenim veritables sorpreses, i aquest seria el cas recent de les tres obres localitzades al nostre fons amb l’ex-libris manuscrit del matemàtic i astrònom francès Louis Godin.

Louis Godin (París, 1704 – Cadis, 1760) ha passat a ser especialment recordat per haver format part de l’expedició geodèsica que l’any 1736 va marxar al Perú -per encàrrec de l’Académie des Sciences, de la que ell formava part-, amb l’objectiu de mesurar un arc de meridià per tal de…

View original post 453 more words

This gallery contains 1 photo.


1 comentari

300 anys de Leibniz: matemàtic, filòsof, bibliotecari

Barcelona pensa

Barcelona Pensa

Barcelona acull aquesta setmana la tercera edició del festival de filosofia Barcelona Pensa, promogut per la Facultat de Filosofia de la Universitat de Barcelona (UB), amb l’objectiu de difondre i apropar la filosofia a la ciutadania. El festival mira de convertir el discurs filosòfic en un bé comú i compartit, amb voluntat d’eliminar la frontera entre alta i baixa cultura, per fer del pensament teòric un element fonamental de la nostra experiència.

Des del dia 14 i fins el 19, s’ofereixen una trentena de propostes diferents distribuïdes per espais emblemàtics de la ciutat: de l’Ateneu Barcelonès al Centre de Cultura Contemporània de Barcelona (CCCB), passant per l’Edifici Històric de la UB, l’Institut d’Estudis Catalans (IEC), diverses llibreries —La Central, Altaïr, Calders, Gigamesh, Laie, NoLlegiu—, museus —Museu d’Art Contemporani de Barcelona (MACBA), Museu Nacional d’Art de Catalunya (MNAC), Museu Picasso— o les facultats de Filosofia i Medicina de la UB.

300 anys de Leibniz: matemàtic, filòsof, bibliotecari

 300 anys de Leibniz: matemàtic, filòsof, bibliotecariGottfried Wilhelm Leibniz va morir avui fa 300 anys, el 14 de novembre de 1716. Aprofitant l’efemèride, el Barcelona Pensa vol retre homenatge a l’home polifacètic que va deixar una empremta tan profunda en el pensament europeu. Leibniz, filòsof, científic, matemàtic, diplomàtic, jurista, bibliotecari i filòleg va excel·lir en totes disciplines en què va treballar.

En una iniciativa pionera, la Facultat de Biblioteconomia i Documentació, la Facultat de Filosofia i la Facultat de Matemàtiques i Informàtica, juntament amb el Centre de Recursos per a l’Aprenentage i la Investigació (CRAI) de la UB, us proposem un acostament a les diferents dimensions del seu pensament i de la seva figura.

Els diversos especialistes que participaran al col·loqui han redactat els textos de la guia de lectura, amb la intenció de reflectir la triple vessant que destaquem:

El significat de Leibniz, 300 anys després (Carlos Dorce, Facultat de Matemàtiques):

“Gottfried Wilhelm Leibniz (1646-1716) va ser, probablement, un dels últims genis universals. Sense cap tipus de dubte, les seves idees van contribuir a una de les èpoques més productives de la Humanitat, ja que el segle XVII va ser el context idoni d’evolució epistemològica i cultural on el panorama intel·lectual va desenvolupar-se d’una manera molt destacada.”

Leibniz, matemàtic (Josep Pla i Carrera, Facultat de Matemàtiques):

“Més enllà de les seves diferències i polèmica amb Newton, devem molt al geni matemàtic de Leibniz. És possible acostar-se avui amb un mínim de càrrega matemàtica a algunes de les novetats aportades per Leibniz a aquest camp: els nombres i les corbes transcendents, el teorema fonamental del càlcul i el naixement de les equacions diferencials.”

Leibniz, filòsof (Maria Ramon Cubells, Facultat de Lletres de la Universitat Rovira i Virgili):

El pensament de Leibniz és assimilador: intenta trobar la manera de conciliar la filosofia antiga i la moderna. Partint d’alguns problemes cartesians, vol superar el cartesianisme: la crítica a la noció de substància de Descartes i, sobretot, a la res extensa el portarà a la introducció de la noció de força (vis), que el conduirà a proposar una nova ciència, la dinàmica.

Leibniz, bibliotecari (Jesús Gascón, Facultat de Biblioteconomia i Documentació).

En un moment que no era habitual, concebé un sistema d’indexació dels continguts i encoratjà els editors i societats científiques perquè distribuïssin resums de les novetats anuals en els seus camps.

Sobre el conjunt de l’obra de Leibniz (Josep Montserrat, Facultat de Filosofia):

L’extensió de l’obra de Leibniz és immensa. La majoria són esborranys i només una part mínima va ser publicada. En vida, la Teodicea (1710) i articles a les Acta eruditorum o al Journal des Savants. Va enllestir, però mai va publicar els Nous assaigs sobre l’enteniment humà, que romangueren inèdits fins 1765.

300 anys de Leibniz

L’acte, gratuït però amb inscripció prèvia, se celebrarà dimecres 16 de novembre a les 12:00 a l’Aula Magna de l’Edifici Històric.

Més informació


Deixa un comentari

Petia Radeva: «La transferència de coneixement és un motor de motivació per als investigadors»

El web de la Fundació Bosch i Gimpera (FBG) ofereix una entrevista a Petia Radeva, professora del Departament de Matemàtiques i Informàtica de la Universitat de Barcelona (UB) i investigadora del Centre de Visió per Computador (CVC). La reproduïm íntegrament pel seu interès.

Petia RadevaLa passió que des de ben petita va sentir Petia Radeva pels números la va portar a llicenciar-se en Matemàtiques i en Informàtica, a cursar un màster en Processament d’Imatges i Intel·ligència Artificial i a doctorar-se amb una tesi sobre la visió per computadora. Ara, aquesta investigadora de Bulgària establerta a Barcelona dirigeix el grup de recerca Computer Vision de la UB i està adscrita al CVC, on treballa en el desenvolupament d’algorismes i models matemàtics i estadístics per al processament d’imatges adquirides per lifelogging.

Què és exactament el ‘lifelogging’?

El lifelogging és el procés de captar imatges sobre la vida d’una persona. Per exemple, el Facebook és lifelogging perquè explica la nostra vida. Si parlem del visual lifelogging parlem d’una càmera portàtil, molt lleugera i fàcil d’usar –no té cap botó– que fa dues fotos per minut i amb la qual pots saber tot el que has fet durant el dia: on has estat, amb qui has parlat, què has menjat… Això obre el camí a moltíssimes aplicacions, perquè cada dia s’aporten més evidències que l’estil de vida repercuteix en la majoria de les malalties importants. Gràcies a aquesta tecnologia, un pacient pot mostrar objectivament al seu metge si menja a l’hora que diu, si surt a passejar, si porta una vida activa…

Què té a veure tot això amb les matemàtiques?

La càmera capta dues imatges per minut; per tant, al final del dia tenim dues mil imatges. D’aquestes, n’hi ha molt poques que aportin informació. Si haguéssim de repassar-les cada dia, al final del mes tindríem fins a 100.000 imatges que ningú no es miraria. Nosaltres dissenyem algorismes computacionals i models matemàtics i estadístics per saber si una imatge és semànticament rica o no. Ja tenim uns algorismes desenvolupats, validats i publicats i d’altres en què estem treballant.

Quina aplicació pot tenir aquest procés?

Amb l’equip de la Dra. Maite Garolera, del Consorci Sanitari de Terrassa, treballem per aplicar el lifelogging a malalts amb deteriorament cognitiu lleu. Aquestes persones encara són autònomes, poden viure soles a casa, però comencen a tenir els primers símptomes d’una malaltia que els afecta en la seva vida quotidiana. Tenim la teoria que utilitzant el lifelogging i treballant amb les seves imatges biogràfiques es pot exercitar la memòria i alentir el procés. Avui dia aquests pacients fan sudokus i exercicis matemàtics per exercitar la memòria, exercicis molt poc naturals per a un malalt. Nosaltres pensem que treballar amb les imatges biogràfiques és el més natural, perquè les emocions que hi ha darrere les imatges també poden ajudar i fer que les teràpies siguin molt més eficients. Per altra banda, també treballem amb qüestions relacionades amb la nutrició, amb les migranyes, amb la depressió i amb l’assistència a casa de persones grans o amb discapacitats.

Podria tenir aquesta tecnologia alguna altra aplicació fora de l’àmbit sanitari?

El lifelogging podria ser una eina molt interessant per poder preservar l’herència cultural intangible: els costums, les tendències, les tradicions, els moviments socials… Amb les càmeres portàtils i les xarxes socials guardem moltíssima informació de la nostra vida cultural, i processar tota aquesta informació ens permet guardar i preservar la nostra cultura intangible per a les següents generacions.

Com veu la situació actual de la recerca a Espanya i a Catalunya?

Penso que estem pitjor que fa cinc anys: el finançament dels projectes públics és molt més baix i s’aproven menys projectes i amb menys pressupost. A Espanya no hi ha diners, i per això ara mateix hi ha una forta pressió perquè demanem projectes europeus, però no hi ha una infraestructura de suport. Per als projectes europeus no només has de proposar una tecnologia de recerca, sinó que també has de saber fer un pla de negoci i tenir la capacitat i l’expertesa de gestionar grans grups, cosa que requereix tenir unes fortes capacitats de direcció. Tota aquesta crisi la patirem, com a mínim, els pròxims vint anys. Dels quinze doctorands que jo he tingut, sis estan treballant a l’estranger, i tot allò que Espanya hi ha invertit ara no ho pot aprofitar. Els investigadors que podrien portar projectes, fer recerca o avançar amb la tecnologia aquí, estan fora. Amb això estem perdent molt, però és difícil intentar convèncer algú que no vol escoltar.

Quina opinió té sobre la transferència de coneixement?

Crec molt en la transferència de coneixement, perquè, per un costat, és una eina de validació de tota la feina que fem amb els models teòrics i, per un altre costat, és un motor de motivació tant per a nosaltres com per als nostres alumnes. El fet que allò que inventem, a més de ser innovador, pugui ajudar persones, motiva molt. A més, hi ha empreses que plantegen uns problemes que moltes vegades poden ser més complexos que els que nosaltres mai ens podríem imaginar. Les empreses tenen un vincle directe amb el mercat, i per tant són les que poden portar un producte al mercat, una feina que està poc relacionada amb la recerca que nosaltres fem.

Més sobre Petia Radeva

La millor qualitat d’un científic

La curiositat

El millor invent de la història

L’ordinador, perquè la digitalització de la informació ha accelerat la nostra vida.

L’FBG és…

… molt útil per als investigadors, perquè fa l’enllaç amb la societat, amb les institucions i amb les empreses que els investigadors no tenim temps de fer.

Més informació